Quantum Darwinism, an Idea to Explain Objective Reality, Passes First Tests

  • 0 Replies

0 Members and 1 Guest are viewing this topic.


  • *
  • Old Name
  • *****
  • Contrarian Wanker
  • Posts: 891
  • "Trickster Makes This World"
    • View Profile
« on: July 22, 2019, 04:49:29 pm »
Quantum Darwinism, an Idea to Explain Objective Reality, Passes First Tests

One of the most remarkable ideas in this theoretical framework is that the definite properties of objects that we associate with classical physics — position and speed, say — are selected from a menu of quantum possibilities in a process loosely analogous to natural selection in evolution: The properties that survive are in some sense the “fittest.” As in natural selection, the survivors are those that make the most copies of themselves. This means that many independent observers can make measurements of a quantum system and agree on the outcome — a hallmark of classical behavior.

This idea, called quantum Darwinism (QD), explains a lot about why we experience the world the way we do rather than in the peculiar way it manifests at the scale of atoms and fundamental particles. Although aspects of the puzzle remain unresolved, QD helps heal the apparent rift between quantum and classical physics.

About a decade ago, while Riedel was working as a graduate student with Zurek, the two showed theoretically that information from some simple, idealized quantum systems is “copied prolifically into the environment,” Riedel said, “so that it’s necessary to access only a small amount of the environment to infer the value of the variables.” They calculated that a grain of dust one micrometer across, after being illuminated by the sun for just one microsecond, will have its location imprinted about 100 million times in the scattered photons.

It’s because of this redundancy that objective, classical-like properties exist at all. Ten observers can each measure the position of a dust grain and find that it’s in the same location, because each can access a distinct replica of the information. In this view, we can assign an objective “position” to the speck not because it “has” such a position (whatever that means) but because its position state can imprint many identical replicas in the environment, so that different observers can reach a consensus.

Horodecki and other theorists have also sought to embed QD in a theoretical framework that doesn’t demand any arbitrary division of the world into a system and its environment, but just considers how classical reality can emerge from interactions between various quantum systems. Paternostro says it might be challenging to find experimental methods capable of identifying the rather subtle distinctions between the predictions of these theories.

Still, researchers are trying, and the very attempt should refine our ability to probe the workings of the quantum realm. “The best argument for performing these experiments probably is that they are good exercise,” Riedel said. “Directly illustrating QD can require some very difficult measurements that will push the boundaries of existing laboratory techniques.” The only way we can find out what measurement really means, it seems, is by making better measurements.
Health Resources:


Register family with 911 services. Also mental health info & hotlines, articles, treatment assistance options, prescription assistance, legal aid, etc.